Alan Stern, Rowland Institute at Harvard

Paul E. McKenney, Meta Platforms Kernel Team
Michael Wong, YetiWare Inc.
Maged Michael, Category Labs

Gonzalo Brito, NVIDIA
Kangrejos, Copenhagen, Denmark, September 8, 2024

Lifetime-End Pointer Zap &
How to Avoid OOTA Without Really Trying

© 2025 Meta Platforms

‘Overview

This Is just an overview, not a replacement for the
papers themselves

P2414R10 “Pointer lifetime-end zap proposed solutions”

* https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2025/p2414r10.pdf
P3347R5 Invalid/Prospective Pointer Operations

* https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2025/p3347r5.pdf

* Based on Davis Herring's P2434R4 “Nondeterministic pointer provenance”

* https://www.open-std.org/jtcl/sc22/wg21l/docs/papers/2025/p2434r4.html
P3790R1 “Pointer lifetime-end zap proposed solutions: Bag-of-bits pointer class”
* https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2025/p3790rl.pdf
P3692R2 “How to Avoid OOTA Without Really Trying”
 https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2025/p3692r2.pdf

‘Overview

Lifetime-end pointer zap
Out-of-thin-air (OOTA) cycles
Where are we on OOTA?

Leverage restrictions:

- Real computer systems

Speculate properly or not at all

Existing restrictions for volatile atomics

No invention or repurposing of atomic loads
Tooling looks at object code

Future directions

Lifetime-End Pointer Zap

Problem Restatement (C11, 1/2)

struct node_t* _Atomic top;

void list_push(value_t v)

{
struct node_t *newnode = (struct node_t *) malloc(sizeof(*newnode));
Struct node_t *next = atomic_load(&top);

set_value(newnode, Vv);
do {
set_next(newnode, next);
// newnode’s next pointer may have become invalid
} while ('atomic_compare_exchange_weak(&top, &next, newnode));

}

Problem Restatement (C11, 2/2)

volid list_pop_all()
{

struct node_t *p = atomic_exchange(&top, NULL);

while (p) {
struct node_t *next = p->next;

foo(p);

P = next;
}
}

Problem lllustration (C11)

Freelist

Initial State —> A@1

Problem lllustration (C11)

Freelist

Initial State —> A@1

S o I W

Problem lllustration (C11)

Freelist

Initial State —> A@1

runen [—ICE— LR
Pop all top N B @ 2 ettty A@1

Problem lllustration (C11)

Initial State
Pop all top P B @ 2 il

Freelist

10’

Problem lllustration (C11)

Initial State

Push B#1 top A@1 B@ 2

Pop all top P B @ 2 il
Push B#2 top B@?2 ---

Freelist

11’

Problem lllustration (C11)

Initial State Rie]e A@1

Push B#1 top A@1 B@ 2

Pop all top

Push B#2 top

Freelist

12'

Problem lllustration (C11)

Freelist
Initial State Rie]e A@1
Push B#1 top A@1 B@?2
Popall Bl 0 HEE@PA--—-—-—=—=-===== A@1

Push C “Zombie Pointer”

OK in assembly language!!!

Push B#2 top

13

Problem lllustration (C11)

Initial State Rie]e A@1

Push B#1

Pop all - il

Push C “Zombie Pointer”

OK in assembly language!!!

14

This i1s Real and Isn’t Going Away

LIFO stack described by Treiber in 1986
- Written in IBM BAL, avoiding issues with compilers

LIFO stack alluded to in early 1970s

LIFO stack implemented in Rust library
— Though with pop(), not pop_all().

Used in heavily production in many languages
- Often open-coded, often inadvertently reinvented

15'

OK, OK, What 1s New Since 2024777

C and C++: Pointer Provenance

e Pointers contain bits and also “provenance”

- Compiler may assume that pointers from two different calls to
the allocator are unequal

— Some provenance might be part of pointer value (ARM MTE)
* Provenance may be erased
— Conversion to integer, 1/O, optimization frontiers

* Davis Herring C++ proposal (P2434R4) provides “angelic
provenance”, but now limited

17

C++: Angelic Provenance

* Davis Herring P2434R4 (“Nondeterministic pointer
provenance”) restricts provenance restoration

- Conversion from integer, 1/O, optimization frontiers

— At which point, the compiler must choose provenance (if
any) that allows the program to be well-formed

* But compiler need not consider objects where
provenance restoration happens-before the
beginning of that object’s storage duration

18’

C++: Angelic Provenance

* Davis Herring P2434R4 (“Nondeterministic pointer
provenance”) restricts provenance restoratio

— Conversion from integer, 1/O, opti

- At which point, the compi
any) that allows t

I'S

e provenance (if
e well-formed

ot consider objects where
estoration happens-before the
Ing of that object’s storage duration

19'

Problem lllustration (C11)

Freelist
Initial State Rie]e A@1
Push B#1 top A@1 B@?2
Popall Bl 0 HEE@PA--—-—-—=—=-===== A@1

Push C “Zombie Pointer” needs

provenance from “Push C”

Push B#2 top

20

Problem lllustration (C11)

Initial State Rie]e A@1

Push B#1

Pop all

“Zombie Pointer” needs
provenance from “Push C”

4’
-
”
-

21

‘What Else Is Needed?

 P2414R10 (“Pointer lifetime-end zap proposed solutions”): Provenance
restoration results from:

— Conversions to/from atomic<T *>
* Including old pointer referenced by successful CAS operations

— Volatile accesses involving pointers
* P3347R5 (“Pointer lifetime-end zap proposed solutions: Tighten IDB for invalid
and prospective pointers”)

- Glvalue-to-rvalue conversions from invalid pointers must produce representation values
consistent with those of the Ivalue

 P3790R1 (“Pointer lifetime-end zap proposed solutions: bag-of-bits pointer
class”): Provenance restoration results from:

- ptr_bits<T> (But now internal representation not visible to user per IBM System i)

|

22

- launder_ptr_bits() “identity” function

‘What Else Is Needed?

« P2414R10 (“Pointer lifetime-end zap proposed solutions”): Provenance
restoration results from:

— Conversions to/from atomic<T *>
* Including old pointer referenced by successful CAS operations

- Volatile accesses involving pointers
* P3347R5 (“Pointer lifetime-end zap pr
and prospective pointers”)

- Glvalue-to-rvalue conv
consistent with th

« P3790R1 (“Pointer e-end zap proposed solutions: bag-of-bits pointer
class”): Provenance restoration results from:

- ptr_bits<T> (But now internal representation not visible to user per IBM System i)

23

ighten IDB for invalid

ointers must produce representation values

- launder_ptr_bits() “identity” function

Status In C++ Committee

 All progressing through C++ committee:
- P2414R10 “Pointer lifetime-end zap proposed solutions”

- P3347R5 “Pointer lifetime-end zap proposed solutions: Tighten
IDB for invalid and prospective pointers”

- P3790R1 “Pointer lifetime-end zap proposed solutions: bag-of-bits
pointer class “

— Davis Herring’s P2434R4 “Nondeterministic pointer provenance”

* No guarantees, but best progress thus far

24

Pointer-Zap Discussion

25

OOTA Cycles

Proposed Change to C++ Standard ,

Proposed Change to C++ Standard

* P3692R2 (“How to Avoid OOTA Without Really Trying”):

— After N5008 33.5.4p8 ([atomics.order])33.5.4p8 ([atomics.order]):

* “Implementations should ensure that no “out-of-thin-air” values are computed that
circularly depend on their own computation. [Note 6 ... example ... |’

- Add the following:

« “Compiler-based implementations whose binaries run on conventional hardware are
guaranteed not to compute out-of-thin-air values in programs that are free of
undefined behavior, as long as they restrict themselves to thread- at-a-time analysis
and and treat non-volatile atomic accesses as if they were volatile, except that,
when permitted by the as-if rule, they may omit accesses, merge accesses to the
same object, or reorder accesses to different objects.”

28

Proposed Change to C++ Standard

e
* P3692R2 (*How to Avoid OOTA Without Reallv % e

— After N5008 33.5.4p8 ([atomics.order])33 ,qed J‘eeder])

“Implementations should ensure that = e _s are computed that
C|rcularly depend on their own £~ e\\ X Co“\ example ..

- Add the following: e\ (6
PSSRV
 “Compiler-bas~ e(‘\3‘\ “gles run on conventional hardware are
\ X 5 _ades in programs that are free of

guaranfo e(e
(\ G’(ay as (\\ ,otrlct themselves to thread- at-a-time analysis
e ‘ “ulatile atomic accesses as if they were volatile, except that,
when r.so ~u by the as-if rule, they may omit accesses, merge accesses to the
same olect, or reorder accesses to different objects.”

29'

OOTA Cycles: Background

OQOTA Cycles

» Self-satisfying load-buffering cycle, x==y==42

Process 0 Process 1

Reads-From
Semantic

: External :
r1 =rlx x; >< r2 =rlxy;
y =rix rl; X =rlx r2; 2l d‘ependency

31
Relaxed load or store denoted by “=rlx”

'OQTA Cycles

» Self-satisfying load-buffering cycle, x::y::42
\"
\o

Process O Proce-
Reads-From S’
— : External o) : Semantic
— > I5 rix X (G W < data dependency

y =rlx r1; L X =rlx r2;

32'

'OQOTA Cycles: Reads-From Internal

ri =rilx X;
Y =rlx ri;

rfi
rz =rlx Y,; «—!
Z =rlx r2;

33'

'OQOTA Cycles: Reads-From Internal

ri =rilx X; ri =rilx X;
Y =rlx ri; Z =rlx ri;
r2z =rilx Y; Y =rlx ri;

Z =rlx r2, rz =ri,

34

'OQOTA Cycles: Reads-From Internal

ri =rilx X; ri =rilx X;
Y =rlx ri; Z =rlx ri;
r2z =rilx Y; Y =rlx ri;
Z =rlx r2, rz =ri,

Compiler eliminated the read from Y so that
the store to Z can now occur before the storeto Y

35'

'OQOTA Cycles: Reads-From Internal

ri =rilx X;
Y =rlx ri;
r2z =rilx Y;

36
See Section 2.1 (“*OOTA: rf vs. rfe”) of P3692R2

'OQOTA Cycles, Original Diagram

» Self-satisfying load-buffering cycle, x==y==42

Process 0 Process 1

Reads-From

External Semantic

data dependency

r1 =rlx x;

r2 =rlx y;
X =rlX r2;

—

y =rix rl;

37

'OQTA Cycles, Original Diagram

* Self-satisfying load-buffering cycle, x==y==

Process 0 Procesc -
Reads-From \

External “‘(ea Semantic
l‘\ \“—rlx 2 < data dependency

r1 =rlx x;

—

38'

'OQTA Cycles, Original Diagram

* Self-satisfying load-buffering cycle, x==y==42

Process 0

Reads-From
External Semantic

< data dependency

r1 =rlx x;

—

39'

Where Are We on OOTA?

‘Where Are We on OOTA? (TL;DR)

Process 0 Process 1

Reads-From

rl =rix x; >Ext% 2 =rixy;
y =rix rl; X =rlx r2;

41'

‘Where Are We on OOTA? (TL;DR)

Process 0 Process 1

Reads-From
rl =rix x; >Ext% 2 =rixy;
y =rix rl; X =rlx r2;

Reads take time

42

‘Where Are We on OOTA? (TL;DR)

Process 0 Process 1

Reads-From
rl =rix x; >Ext% 2 =rixy;
y =rix rl; X =rlx r2;

Reads take time

awl) sayel

UOIINJ9Xa UoNINASU|

Instruction execution
takes time

43'

‘Where Are We on OOTA? (TL;DR)

Process 0 Process 1

Reads-From
rl =rix x; >External< 2 =rixy;
y =rixrl; X =rix r2;

Reads take time

awl) sayel

UOIINJ9Xa UoNINASU|

Instruction execution
takes time

To form an OOTA cycle, at least one step must go backwards in time!!!

44

‘Where Are We on OOTA? (TL;DR)

awl) sayel

UOIINJ3Xd UoNINASU|

Instruction execution
takes time

To form an OOTA cycle, at least one step must go backwards in time!!!

45'

‘Where Are We on OOTA?

* Generalized “OOTA Cycle” (Section 2.2.2)

 Fundamental property of semantic dependency
(Sections 5.3 and 6.1)

e Demonstrate OOTA-freedom under restrictions

(Sections 6.2-6.4 for demonstration, 4.4 for
restrictions)

46'

Leverage Restrictions

va

Real Computer Systems

48'

'Real Computer Systems: Store-to-Load

* Store-to-load links are temporal*

1600
1400
1200
1000

800

600

[}
[°1]
=
=
=]
w
B
_
]
=
E
=
=

400
200

0 i &Y
C 50 100 150 200 250

Store-to-Load Latency (Timestamp Periods)

* The event that is logically first must happen before the other event in real-world time 49'
Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of store to end of load

'Real Computer Systems: Store-to-Load

* Store-to-load links are temporal: HW view

v

rfe

rl = x.loadl):

50'

'Real Computer Systems: Store-to-Store

* Store-to-store links are atemporal*

%2}
2
=
E
©
7]
—
5}
=
@
0
£
S
=

-2500 -2000 -1500 -1000 -500
Store-to-Store Latency (Timestamp Periods)

* The event which is logically first can happen after the other event in real-world time 51
Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of winning store to end of store

'Real Computer Systems: Store-to-Store

e Store-to-store links are atemporal: HW view

WRITE_ONCE(x

52'
“co” is “modification order” in the C++ memory model

'Real Computer Systems: Load-to-Store

* Load-to-store links are atemporal

w
£2
=3
I
©
wn
it
S
=
@
a
]
£
S
4

1] SREg——
-250 -200 -150 -100 -50 0 50 100

Load-to-Store Latency (Timestamp Periods)

53
Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of load to end of store

'Real Computer Systems: Load-to-Store

* Load-to-store links are atemporal: HW view

“fr” is “from reads”, which connects a read to a write that happened too late to affect the value loaded

'Real Computer Systems:. Summary

* Load-to-store links: Atemporal
e Store-to-store links: Atemporal

e Store-to-load links: Temporal
- And thus have ordering properties on the cheap

See Appendix A (“Interthread Communications”) of wg21.link/P3064R2 (“How to Avoid OOTA Without Really Trying”)

55

Speculate Properly or Not At All

Speculate Properly or Not At All

ri =speculatex 2;
r2 = somefunc(ril);
Y = r2;

X =rlx 1;

57

Speculate Properly or Not At All

ri =speculatex 2;
r2

= somefunc(rl);
= r2,

. 58|
Don't just guess! Guess and then check!!!

Speculate Properly or Not At All

rl =speculatex 2;
r2 = somefunc(ril);
Y——F2+
X =rix 1; temporalty >»r3 =rlx X; // 1, not 2!
if (r1 !'= r3)
r2 = somefunc(r3);
Y = 1r2;

59'

Speculate Properly or Not At All

60'
See Section 1.1 (“Brief OOTA Overview”) and Section 5.2 (“Instruction Ordering”) of P3692R2

Existing Restrictions on Volatile Atomics

61'

EXisting Restrictions on Volatile Atomics

 Compiler may not:
- Reorder accesses
- Invent, duplicate, or repurpose accesses
- Merge or fuse accesses
- Omit accesses

e Relax restrictions for non-volatile atomics?

62

No Atomic-Load Invention/Repurposing

63’

‘No Atomic-Load Invention

* Guaranteed perfect square for small X:
int rO@ =rlx x;
int rl =r0 *rO0+ 2 * ro + 1;
e But not if atomic loads are invented!!!
int rO@ =rlx x;
int invented =rlx X;
int r1 =r0 * rO@ + 2 * 1nvented + 1;

64

‘No Atomic-Load Invention

« Guaranteed R4 are for small X:

int ro
int O + 1/
e But no nted!!!

int r1 = * 1nvented + 1;

65

‘No Atomic-Load Repurposing

* Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to X
int rO@ =rlx x;
int rl =r0 *r0o+ 2 * ro + 1;
e But not if atomic loads are repurposed!!!
r2z =rlx x;
do_something(r2); // No synchronization or stores to X
int r0 =rilx x;
int rl =r0@ *r0 + 2 *r2 + 1;

66'

‘No Atomic-Load Repurposing

e Guaranteed n& o for small X;

achronization or stores to X

67

Instead, Merge the Atomic Loads

* Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to Xx
int rO =rilx x;
int ri =r0 *rOo+ 2 * r0 + 1;
* And that guarantee is maintained for merged loads:
ro =rilx x;
do_something(r@); // No synchronization or stores to Xx
int r1 =r@ *r0 + 2 * ro + 1,

68’

Instead, Merge the Atomic Loads

* Guaranteed perfect square for small X:

r2 =rlx x;

do_something(r2); // No synchronizaid
int rO =rilx x;
int r1 = ro *

69'

'Atomic Loads and Memory Ordering

ri =rix X; X =rlx 1;
sdep?

r2 =rlx Y;____l

Z =rlx (r1 ==1r2),

Note: X, Y, and Z boolean and initially zero

70

See Section 4 (“C++ Compilers”)of P3692R2

'Atomic Loads and Memory Ordering

ria =rilx X; X =rlx 1;
rib =rilx X; // Invented load
If (ria != rib) {

Z =rlx 1, «¥—

r2 =rlx Y;
sdep!
} else {
r2 =rlx Y;

Z =rlx (rib == r2),

¥ Note: X, Y, and Z boolean and initially zero

|

71'

Inventing atomic load likely also invents hundreds-of-cycles cache miss!!!

'Atomic Loads and Memory Ordering

ria =rilx X; X =rlx 1;
rib =rix X; //

If (rla '= rijf

Z =rlx 1
r2 =rlx
} else {
r2 =rlx
Z =rlx (rik
¥ Note: X, Y, and Z boolean and initially zero

72

See Section 4.3 (“Inventing Atomic Loads Can Cause Errors and Destroy Semantic Dependencies”) of P3692R2

‘Non-Volatile Atomics Optimizations?

* Looking only at relaxed operations:
- Reorder loads/stores from/to different objects
- Merge back-to-back loads to same object
- Drop loads whose values are unused
- Discard first of back-to-back stores to same object

- Fuse loads from (or stores to) adjacent objects if this results in
a machine-word-sized/aligned access

- But no invented, duplicated, or repurposed loads!!!

73'

Tooling Looks at Object Code

See Section 7.3 (“Semantic Dependencies and Tooling”) and Appendix C (“But What About Tooling?”) of wg21.link/P3064R2

'OQOTA Cycles, Original Diagram

» Self-satisfying load-buffering cycle, x==y==42

Process 0 Process 1

Reads-From

External Semantic

data dependency

r1 =rlx x;

r2 =rlx y;
X =rlX r2;

—

y =rix rl;

75

'OQOTA Cycles, Original Diagram

» Self-satisfying load-buffering cycle, x==y==42

Temporal
Process O / Process 1
Reads-From
rl =rix x; >EX'[% r2 =rlx y; Semantic
y =rix rl; X =rlx r2; 2ElE d‘ependency
Temporal?

Semantic dependency?

76

'OQOTA Cycles, Original Diagram

Semantic
data dependency

Temporal?
Semantic dependency?

77

‘Semantic Dependencies are Tricky

* At source-code level, semantic dependencies:
— Are not strict functions of source code (Section 2.2.1)
- Can be many-to-one (Section 2.2.2)
- Depend on partially defined executions (Section 2.2.8-9)
— Depend on compilers and their users (Section 2.2.8 & 4.1)

* Current paper assumes local analysis (no global cross-
thread optimizations)

78’

‘Semantic Dependencies in Code?

* Semantic dependencies are temporal:
— Instructions take time to execute
— Speculation must be checked against actual load

)

‘Semantic Dependencies in Code?

* Semantic dependencies are temporal:
— Instructions take time to execute
— Speculation must be checked against actual load

* Compiler optimizations break dependencies:
- But HW memory models respect dependencies
- Thus look at object code (selL4 verification approach)
- Also look at other compiler-produced artifacts

See Sections 4-6, P3692R2

80'

‘Semantic Dependencies in Code?

See Sections 4-6, P3692R2

81'

‘Where Are We on OOTA? (Reprise)

* Generalized "OOTA Cycle” (Section 2.2.2)

* Fundamental property of semantic dependency
(Sections 5.3 and 6.1)

 Demonstrate OOTA-freedom under restrictions (Sections
6.2 and 6.3 for demonstration, 4.4 for restrictions)

— The main restriction is: No invented, duplicated, or repurposed
atomic loads

82

Future Directions

* From compilers to (some) JITs, Interpreters, and link-
time optimizations (LTO)

 Compilers doing (some) global analysis given volatile
atomics

ldentify absolute semantic dependencies inherent in
source code

* Non-shared-memory communication

83'

Discussion

84'

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

